
 1

CALLING THE LP_SOLVE LINEAR PROGRAM SOFTWARE FROM EXCEL,
S-PLUS AND R

Samuel E. Buttrey

Department of Operations Research
Naval Postgraduate School
Monterey, CA 93943 USA

ABSTRACT

We present a link that allows Excel, S-Plus and R to call the functions in the lp_solve
system. Lp_solve is free software (licensed under the Gnu Lesser GPL) that solves
linear and mixed-integer linear programs of moderate size (on the order of 10,000
variables and 50,000 constraints). Since these problems are substantially larger than those
that can be handled by Excel’s built in solver, this link will allow Excel users to handle
large problems at no extra cost.

Keywords: optimization, software, freeware, linear program, Excel

DISCLAIMER

 The reader is cautioned that computer programs developed in this research may
not have been exercised for all cases of interest. While every effort has been made,
within the time available, to ensure that the programs are free of computational and logic
errors, they cannot be considered validated. Any application of these programs without
additional verification is at the risk of the user.

 2

1. INTRODUCTION

A. The Excel Solver And Its Limitations

The spreadsheet program Microsoft Excel 2000 for Windows (Walkenbach, 1999) comes
supplied with a “Solver” add-in that performs numerical optimization including linear
and integer programming. However, the Solver can handle only comparatively small
problems (200 “adjustable cells,” according to the on-line help for Excel 2000).
Additional “add-ins” that allow the solution of larger problems are available for purchase.
This paper addresses a need for a free solver to handle linear or mixed integer programs
of substantial size (on the order of 10,000 variables and 50,000 constraints). We use the
free software lp_solve (see the ftp site at ftp://ftp.ics.ele.tue.nl/
pub/lp_solve), re-compiled into a dynamic linked library (DLL) using a free
compiler and development environment. This DLL works together with an interface
written in Visual Basic for Applications on the Excel end and in C on the DLL end to
allow calls to the lp_solve application programming interface (API).

The same DLL and interface allow calls to lp_solve from the statistical environments
S-Plus (Insightful, 1999) and R (R Project Home Page, http://www.r-
project.org). The latter is another piece of freeware. Lp_solve is licensed under
the Gnu Lesser General Public License; see the documentation for specific terms of the
licensing agreement.

B. DLLs and the Development Environment

For this project we used the Cygwin development environment (Cygwin project,
http://www.cygwin.com). This environment supplies a set of Unix-like tools to the
Windows application developer. In particular it allows the use of the free Gnu compiler
gcc (Gnu project, http://gcc.gnu.org). Through this environment the developer is
spared the necessity of having to purchase a commercial development environment.

The gcc compiler and its associated tools allow the production of DLLs. The DLL
contains the essential instructions associated with the program. The DLL acts as a
“library” that can be attached to the main program (Excel, for example) and whose
member functions can be called as needed.

2. THE PIECES OF THE LINK

A. Description
The link that we have constructed consists of two parts. The first is Visual Basic for
Applications (VBA) code that is part of the Excel workbook. This code contains a form
that allows the user to specify the objective function, constraints, integer variables, and
the place for the results to appear. It then declares and calls the second part, a C function

 3

that acts as the interface between the VBA call and the functions exposed by the
lp_solve API. Figure 1 shows a schematic diagram of the link.

Excel

S-Plus

R

C

Link

VBA

•••
Lp_solve

The Link

B. The C Link
The C link is necessary in order to call lp_solve from S-Plus (or R; for brevity “S-
Plus” will include R in this discussion). This is because in some instances lp_solve passes
function arguments by value, but when S-Plus calls a DLL all arguments must be passed
by reference. Furthermore, C functions called from S-Plus cannot return values. The C
link allows function calls originating in S-Plus to be properly “packaged.” The link is not
necessary when calling lp_solve from VBA, since VBA can accept return values and
pass arguments in either style. Still, the C link provides a simple, one-call interface to the
lp_solve system. Currently the caller provides the coefficients of the objective
function, the matrix of constraints, arrays containing the directions and right-hand sides
of each constraint, and a vector indicating which variables are required to be integers.
Details of handling these arguments (for example, the objective function array needs to
have an additional leading 0) are managed by the caller.

Figure 1: Schematic of Link Between Excel and S-Plus

 4

Inside the C link, the code dispatches calls to some of the lp_solve functions. There
are about 150 of these, but at the moment only nine are used. These calls create the
program, set the objective function and the optimization direction, add constraints, set
integer variables, solve the program, extract the results, and delete the program.

C. The VBA Link
VBA is a dialect of Visual Basic that serves as a scripting language for all Microsoft
applications (for an in-depth introduction, see Walkenbach (1999)). In the present case its
usefulness descends from its ability to handle forms and to call DLLs. The spreadsheet
used for calling lp_solve contains a button which produces a form when pressed. This
form allows the user to select whether the problem is a general mixed linear program, or
specifically an assignment or transportation problem. This selection produces a second
form. For a general mixed integer program, the user fills in the form to describe whether
the problem is a maximization or a minimization, and to give the ranges of the objective
function, constraints, integer variables, and the location where results should be placed. A
press of a button then produces the solution. The current interface is admittedly primitive.
Figure 2 shows a screen shot of a spreadsheet; the “Start Solver” button, the “Choose a
Problem” window and the linear program form are visible.

Figure 2: Problem Selection Window and Linear Program Solver Form

 5

3. DETAILS AND SOME TECHNICAL NOTES

A. Types of Problems
As figure 2 suggests, three types of problems are currently supported in the link. The first
is a general linear program. Here the objective function and constraints are laid out in
rows, with each variable occupying a column. Any linear program in standard form can
be represented in this way.

However, two specific types of linear program that arise in practice are also made
available. In the transportation problem, the decision variables are arranged in a
rectangular matrix, say I by J, so that the decision variables can be denoted by xij, i = 1,
…, I; j = 1, …, J. There is a cost associated with each of the xij, and there are constraints
on row and column sums. For this problem the user needs to enter a rectangular matrix
containing the decision variables, the signs of the constraints, and the constraint values,
and a second matrix containing the costs. The program converts the constraints to the
needed form and requires that all variables be non-negative integers.

The assignment problem is a special case of the transportation problem in which all the
rows and columns are constrained to add up to one. In our implementation the user needs
to provide one matrix with decision variables and a second with cost; the program then
prepares the constraints and requires that all variables be non-negative integers.

B. Compilation
We created DLLs containing both the C link and the lp_solve code using the gcc
compiler in the Cygwin environment. This allows other users to modify the code without
having to purchase a commercial development environment. Code and Makefiles are
available from the author. Note that by default the Cygwin compiler produces DLLs that
themselves depend on another DLL, cygwin1.dll, that is installed with that
environment. Since most users will not have this DLL, compilation should include the
–mnocygwin flag and references to the MinGW libraries so that the resulting DLL can
stand alone (see the Makefile for details).

When producing a DLL for Excel, calls to the compiler should include the
–mrtd flag so that the resulting objects use the Pascal (stdcall) calling convention. This
flag is included in the Makefile file. The DLL for R needs to use the C calling
convention, and so calls to the compiler need to omit the –mrtd flag. Although S-Plus
can seemingly use either convention, we use the Excel DLL for S-Plus use. Users
creating DLLs for R should use the Makefile.R file, which also defines a compile-

 6

time definition BUILDING_FOR_R that accounts for the fact that integer variables are
passed as int * in R but as long * in S-Plus.

C. Calling from Excel
Called a DLL from Excel requires two steps. First the DLL should be declared, using a
Declare statement in the VBA code. Second, it is called using a Call statement. The
documentation suggests that arrays should be declared as arrays in the Declare
statement, and passed as arrays in the Call statement, like this:

Private Declare Sub lpslink Lib "lpsolve.dll" _

(ByRef objOut() As Double,)
Call lpslink (objOut(), ...)

In fact, though, this does not work. Instead, array arguments should be declared as
scalars, and the call should refer to the first element of the array (element 0 unless
specified otherwise), like this:

Private Declare Sub lpslink Lib "lpsolve.dll" _

(ByRef objOut As Double,)
Call lpslink (objOut(0), ...)

A workbook containing all the examples in this document is available from
http://web.nps.navy.mil/~buttrey/Software/lpsolve.

D. Calling from S-Plus or R
In S-Plus 6.1 (Insightful Corp., 1999), DLLs are loaded with the dyn.open() function;
dyn.load() accomplishes that task in R (we are currently using version 1.7.1). Recall
that while the code used to produce the DLLs for S-Plus and R is the same the
compilation schemes are different. Three functions, useable in either S-Plus or R, serve as
the interface to the DLLs. The function lp() accepts, as arguments, the vector of
objective function coefficients, a matrix of constraints, vectors containing the signs of the
constraints and their right-hand side values, and a vector indicating which variables
should be required to be integers. The return value is a list that includes (among other
things) the optimal values of the decision variables and the objective function value. The
related functions lp.assign() and lp.transport() handle the assignment and
tranportation problems in a way analogous to the way they are handled in Excel (see
Examples below).

4. EXAMPLES

A. Example 1: Where Solver is Wrong

 7

An example of where Excel’s solver gives the wrong answer appears in Nemhauser and
Wolsey (1988, p. 443). (This example was brought to our attention by the lp_solve
documentation.) The problem is:

Maximize 592 x1 + 381 x2+ 273 x3+ 55 x4+ 48 x5+ 37 x6+ 23 x7

subject to 3534 x1+ 2356 x2+ 1767 x3+ 589 x4+ 528 x5 + 451 x6 + 304 x7 > 119567
with x1, x2, x3, x4, x5, x6, x7 all integer.

Nemhauser and Wolsey (1988) say “[i]t is not hard to show an optimal solution is x1 =
33, x2 = 1, x3 = 0, x4 = 1, x5 = 0, x6 = 0, x7 = 0, and that the optimal [objective function]
value is 19972.” This is the solution produced by Excel’s solver using the default
settings. In fact, though, the solution (32, 2, 1, 0, 0, 0, 0) meets the constraint and
produces an objective function value of 19979. This is the solution produced by the
lp_solve link. (If “tolerance” is set to 0 in Excel, the solver produces the correct
response, but it gives a message saying “solver could not find a feasible solution.”)
Figure 3 shows a screen shot of the lp_solve link solver producing the correct answer,
shown in grey cells (see the “Nemhauser Example” worksheet in the example workbook).

Figure 3: Lp_Solve Link Finding The Correct Answer to Example 1

 8

B. Example 2: Problems Too Big For Excel’s Solver
It is easy to construct examples too big for Excel’s solver. A simple one on the
“Assignment” worksheet demonstrates the assignment problem. Here there are fifteen
sources (say, operators) to be assigned to fifteen destinations (say, jobs). Each decision
variable represents the assignment of a source to a destination, so in this example there
are 225 variables and, with one constraint per row and column, thirty constraints. Figure
4 shows a screen shot of the assignment problem in the example worksheet. (The lower
matrix shows the assignments, with the total cost of 24 just visible to the bottom right;
the upper matrix shows the costs, with highlighted cells showing the actual assignments.)

Since there are more than 200 adjustable cells in this problem, the Excel solver will not
run. On a laptop computer equipped with Windows 2000, a 2.2GHz processor and 1GB
RAM, Lp_solve handles this problem in very much less than a second. A 75×75
problem takes about three seconds; a 150×150 problem takes about thirty seconds; a
200×200 problem fails, seemingly for lack of memory.

Figure 4: Assignment Problem Example. The upper matrix shows the costs
(highlighted cells show the optimal assignment); the lower shows the
decision variables. The optimal cost of 24 is visible in the bottom right of
the lower matrix.

 9

C. Example 3: Transportation Problem
An example from Bronson (1982) demonstrates the transportation problem and its
implmentation. In the transportation problem the row and column sums are constrained,
but not necessarily to be equal to one. The user enters the sign and value associated with
each constraint, as in the screen shot in figure 5. As with the assignment problem, the I×J
transportation problem is assumed to be a minimization problem, with IJ integer
variables and exactly I+J constraints The optimal value for the example problem, 7790, is
visible in the bottom-right corner of the upper matrix.

5. CONCLUSION AND FUTURE DEVELOPMENT EFFORTS

A. Conclusion
This report describes progress in solving linear programs in Excel. The existing Solver
built in to Excel handles only small problems and occasionally, as in Example 1 above,
produces the wrong answer. Through the C and VBA link described here we can call the
lp_solve free software from Excel and from S-Plus and R to find solutions for
problems orders of magnitude larger. This allows users to solve moderate to large linear
and mixed integer linear programs at no additional cost. In the case of R, this adds a
freeware linear program solution capability to a high-quality freeware statistical software
environment. A workbook available from the author’s web-site demonstrates the link in
general linear programs and some functionality specific to transportation and assignment
problems.

Although lp_solve appears to find the correct solution in the above examples, it
cannot be considered validated software.

 10

Figure 5: Transportation Problem. The user supplies signs and values for
each row and column constraint (upper matrix). The costs (lower matrix)
includes shaded cells set to a large value as a penalty. The optimal value of
7790 is visible in the bottom right-hand corner of the constraint matrix.

B. Further Development
Right now the link is fairly primitive. For example no constraints other than those on the
row and column sums can be added to transportation or assignment problems, and the
location of the optimal value cannot be selected by the user. The error-checking is also
primitive: if a user enters no text at all into the objective function box, for example, that
error will be caught and a reasonable message produced. However if she enters some text
that is not a range at all, the error is not currently caught by the link. Instead Excel returns
a run-time error whose text is largely indecipherable. A number of improvements to the
form interface can be made; for example, right now constraints must appear in rows, not
in columns. The link might be upgraded to allow calls to other lp_solve functions so
as to, for example, establish feasibility, find constraint values, print dual values, and so
on.

 11

For the moment the user needs either to install the DLL into one of the system
directories, or to edit the code so that the location of the DLL is made explicit. A more
elegant solution would be to convert the workbook to an add-in; the add-in could be
managed by Excel’s built-in add-in manager. We anticipate distributing the link under the
same license as the original lp_solve software.

REFERENCES

Bronson, R. (1982), Operations Research, Schaum’s Outline Series, McGraw-Hill, New
York, NA

Insightful Corp. (1999), S-Plus 6 for Window’s Programmer’s Guide, Insightful
Corporation, Seattle WA

Nemhauser, G.L. and Wolsey, L.A. (1988), Integer and Combinatorial Optimization,
John Wiley and Sons, New York, NY

Walkenbach, J. (1999), Microsoft Excel 2000 Power Programming With VBA, IDG
Books, Foster City, CA

